# Polarisation at SGF, Herstmonceux

Matthew Wilkinson, Toby Shoobridge

SGF, Herstmonceux. UK



"Improving support for GNSS and other challenging missions"
17th ILRS Workshop 2011, Bad Koetzting Germany

### Introduction

Our interest began from observing phenomena thought to be caused by polarisation effects in the system.

### This talk will describe:

- Tests designed to determine polarisation effects
- Cause and solutions
- Further investigations into polarisation
- Applications

# First polarisation observation

Calibrating at two SGF SLR targets: one on the nearby Water Tower and a second, more distant target on the South Mast.



It was slow to calibrate on the South Mast with 10Hz.

However, installing the kHz laser gave us a relatively weak signal on the West Tower and a very strong signal in the South.

Opposite to the 10Hz results!



# First polarisation experiment

To observe the emitted polarisation orientation a polarising sheet 'analyser' was placed on the emitter window and rotated.





#### 2nd polarisation observation

The beam as seen in the daytime camera would be invisible in certain parts of the sky.

The zenith backscatter was measured using a photon counter on the 2<sup>nd</sup> telescope port and a PMT on the 1<sup>st</sup> (SPAD) port and rotating the telescope in azimuth.

The opposite phases of the results indicated that the 45° **Dichroic Mirror** was the cause.





### **Standard Mirror test**

The dichroic was removed and a test was designed to establish its variation with polarisation.





# Dichroic

The dichroic was removed and a test was designed to establish its variation with polarisation.



# Dichroic

A UK company called **KV Optical** made a number of designs for an 'ideal' dichroic, each of which underwent our standardised test, until a final design was accepted.



# **Graz Dichroic**

The Graz station now also benefits from a new dichroic.



# **Testing Coudé Mirrors**

The light leaving both lasers hits a chain of 5 mirrors before exiting from the emitter telescope.

Each of these mirrors needs to be as reflective as possible for 532nm light – for all polarisations.



# **Testing Coudé Mirrors - Polarisation**

From studying the polarisation through the coudé we quickly learnt:

Polarisation orientation changes with azimuth and elevation

Linear polarisation becomes circular in certain azimuth positions - due to M2 which was replaced.

from laser



### **Testing Coudé Mirrors - Polarisation**

By considering the laser polarisation as linear and in two perpendicular components, perpendicular to the direction of the beam its orientation was modelled through each reflection.

This included non-planar reflections at M2 and M5, which were treated as transformations into different planes.

This was confirmed by prediction and testing using polarised sheet at different azimuths and elevations.

# **Modelling Polarisation**

#### **Azimuth**



# **Elevation**





# **Controlling Polarisation**

By reversing the modelled reflections and transformations, the input polarisation can be calculated to output a fixed polarisation.

Using a 1/2-wave plate, the input polarisation was set to give an orientation parallel to the elevation axis.

This was confirmed again by prediction and testing at different azimuths and elevations.

# **Controlling Polarisation**

Controlling the 1/2-wave plate in real-time would give a fixed chosen polarisation.

Taking some example passes the 1/2-wave plate would need only slow continuous adjustment to fix the polarisation to the elevation plane.



#### Conclusions

The Herstmonceux SLR station now has a far better understanding of the impact of polarisation in the system.

Replacing the dichroic mirror gave an improvement in return signal of more that 100%.

The polarisation orientation of the emitted laser beam varies across the sky.

Fixing the polarisation emitted is possible by controlling a 1/2-wave plate in real-time.

### Conclusions

# How does investigating polarisation help with the tracking of GNSS?

If satellite retro-reflector array response is dependent on incident polarisation then we could optimise for return rate in real-time.

If the polarisation of the returning laser light is known and preserved, then unpolarised noise could be filtered to improve the signal to noise ratio.